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We perform simulations of magnetohydrodynamic accretion onto equal-mass, nonspinning binary black
holes in 3þ 1 full general relativity addressing the effects of orbital eccentricity. We find that binary black
holes with non-negligible eccentricity accrete matter with periodicity that matches the binary orbital period,
whereas quasicircular binaries exhibit accretion rate modulation at approximately ∼0.7× their binary
orbital period. Additionally, we find that the total jet luminosity is modulated at the orbital period for
eccentric binaries, while quasicircular binaries only exhibit long-term modulations. We perform a radiative
transfer calculation of the dual jet synchrotron emission and demonstrate that the optically thin synchrotron
emission varies on the binary orbital period for eccentric binaries. Moreover, eccentric binaries spend more
time in a low state, where the synchrotron emission is minimum, than in a high state, where the synchrotron
emission peaks. The quasicircular binary also exhibits variability in its optically thin synchrotron emission
but the exact frequency of variability does not appear robust against different parameters. Our suite of
simulations is an essential step toward providing a comprehensive catalog of multimessenger theoretical
models that will enable studies of supermassive binary black holes detectable across the electromagnetic
and gravitational wave spectra.
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I. INTRODUCTION

Supermassive binary black holes (SMBBHs) are expected
to form ubiquitously as the product of galaxy mergers [1–3].
During the merger of the host galaxies, dynamical friction
and three-body interactions drive the inward migration of
the SMBHs down to parsec separations where they encoun-
ter the “final parsec problem”—where theoretical models
find that MBBHs stall during their coalescence [1,4–6].
Recent studies have shown that this “problem” can be
solved by triaxiality in galaxy models or with self-interacting
dark matter [see, e.g., [7–9] ]. Once the binary orbital
separation, d, is within a few milliparsecs, the binary
inward migration is driven by gravitational waves, and
the inspiral timescale becomes shorter than a Hubble time,

tgw ∼ 1.45 × 109ðd=5 mpcÞ4ðM=107M⊙Þ−3 yrs for an
equal-mass binary with total gravitational mass M [10].
When the binary orbital separation is within a few tens of
gravitational radii (d ∼ 20–30rg where rg ≡GM=c2 is the
gravitational radius), the binary is in the strong-field dynami-
cal spacetime regime and the inspiral timescale for equal-
mass binaries is tgw ∼ 36ðd=30rgÞ4ðM=107M⊙Þ days. This
is the regime that gravitational wave detectors target, and is
the focus of our work.
The inspiral and merger of at least a fraction of

SMBBHs is expected to take place in gaseous environ-
ments. The gas-rich post-galaxy merger environment leads
to an increased rate of tidal disruption events (TDE), star
formation, and SMBH activity [3,11,12]. Such a gas rich
environment makes SMBBHs excellent candidates for
multimessenger astronomy because: (i) gas accretion onto
the SMBBH will drive emission across the electromagnetic
(EM) spectrum (see Ref. [13] for a recent review), and
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(ii) the inspiral of the SMBBH generates detectable
gravitational waves (GW) [14–16].
However, observing SMBBHs is challenging. Direct GW

observations of SMBBHs are not currently possible because
there exist no GW detectors that are sensitive enough to
probe gravitational waves from individual SMBBHs in the
nHz to Hz bands.1 The Laser Interferometer Gravitational-
Wave Observatory and Virgo detectors have peak sensitivity
at ∼100 Hz and thereby observe stellar-mass black hole
mergers [17]. On the other hand, pulsar timing arrays (PTA)
observe in the nHz regime, which is appropriate for
109–10M⊙ binaries, but they have so far only yielded strong
evidence for the existence of a stochastic gravitational wave
background [18]. Some studies have suggested that GWs by
individual SMBBHs could be detectable by current gen-
eration PTAs, however, the expected 20-year timeline of
such a detection is longer than the current 15-year dataset
available to PTAs [19,20]. Furthermore, previous PTA
observations placed limits on the detection of individual
sources: no observable 109M⊙ binaries within 120 Mpc and
no 1010M⊙ binaries within 5.5 Gpc at their most sensitive
sky location [21]. Adding more high precision pulsars in the
future will increase the PTA sensitivity ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npulsars

p
,

and hence increase the chances of detecting individual
SMBBHs (see, e.g., Fig. 4 in [22]). However, we may
have to wait until the mid 2030s for the launch of the space-
based Laser Interferometer Space Antenna (LISA) to
observe in the mHz to Hz GW regime where we expect
loud SMBBHs [14–16,23].
On the other hand, EM surveys have discovered more

than 200 SMBBH candidates at varying orbital separations
[3,24–29]. These candidates include a spatially resolved
close-separation SMBBH (7.3 pc) with very long baseline
interferometry [24], radio observations of jet rotation in
OJ287 that could be attributed to a secondary BH [30],
Doppler shifted broad line emission possibly from the
orbital motion of a SMBBH [31], a TDE that can be
explained by a SMBBH [32], and directly observing a dual
active galactic nuclei (AGN) with separations greater than a
kiloparsec [33,34]. However, the vast majority of these
candidates are not in the strong-field dynamical spacetime
regime.
There are also more than 25 SMBBH candidates with a

total mass of >109M⊙ and orbital separation ≲2–4 mpc
[27]. This puts them in the GW-driven and strong-
field dynamical spacetime regime (see Fig. 1 in [35]).
Furthermore, future observatories, such as the Roman
Space Telescope and Athena, are poised to uncover several
hundred SMBBHs candidates out to redshift z ¼ 6 with
masses in the observing capabilities of LISA [36,37].
However, confirmed observations of SMBBHs at the sub-
parsec scale remain elusive; we would need confirmation

by a GW detection, a direct observation of the SMBBH
event horizons, or a “smoking gun” EM signature of a
SMBBH. To aid with this continued search, the community
has turned to theoretical modeling and direct numerical
simulations to identify EM signals that are unique to
SMBBHs. This work focuses on this exact goal.
SMBBHs are likely surrounded by hot magnetized

plasma. If the gas around the SMBBH has enough angular
momentum, it will circularize to form a circumbinary disk
(CBD) [38]. The SMBBH resides at the center of this CBD
in a lower density cavity that has been cleared out by the
binary tidal torques [39,40]. Gas from the CBD then
accretes onto the binary through two tidal streams that
can potentially form minidisks around the individual black
holes [35,41–44]. These minidisks then accrete onto the
BHs, generating emission in the x-ray and UV, producing
Doppler shifted emission lines, and powering relativistic
jets if the fluid is carrying a magnetic field to the BH
horizons (see, e.g., [35,45–47], and [13] for a recent review
on EM signatures of SMBBHs).
There are different computational approaches to studying

these systems, each one applicable and valid in its respective
regime. Newtonian 2D hydrodynamic studies can evolve
binaries for thousands of orbits and help understand the
widely separated nonrelativistic regime (see, e.g., [48–51]
and references therein for some recent work). Implementing
post-Newtonian approximate background metrics allows
for modeling of the SMBBH inspiral at closer separa-
tions than Newtonian approaches and can help gain some
intuition into horizon-scale accretion [47,52]. However,
performing reliable simulations from first principles and
without approximations requires the solution of the Einstein
equations, coupled to general relativistic magnetohydrody-
namics, and radiation transport. Approaches that solve the
Einstein equations are commonly referred to as fully general-
relativistic (for reviews on fully general-relativistic work,
see Refs. [53,54]).
More recent studies of accretion onto BBHs in full general

relativity have explored effects of the disk thickness [55],
unequal mass ratios [41,56], prograde and retrograde spins
[35,44], and misaligned spins [56–58], among other param-
eters. However, the impact of orbital eccentricity on
SMBBH accretion in the relativistic regime has only been
studied for a single simulation setup, in our previous work
[59]. Here, we expand on the details of our previous work
and perform a comparison of CBD accretion onto quasicir-
cular BBHs and BBHs with different values of eccentricity.
While GWs are expected to radiate away orbital eccen-

tricity [60], binary interactions with a CBD can maintain
non-negligible eccentricity into the LISA band [61–63].
This eccentricity depends, among other parameters, on the
binary-disk decoupling radius, which shrinks with increas-
ing disk scale height, H=r [64]. A smaller decoupling
radius would allow the matter to torque the binary further
into its evolution. For example, a thin disk (H=r < 0.01)

1For quasicircular binaries the GW frequency is fGW ∼ 7.2×
10−5ðM=107M⊙Þ−1ðd=20rgÞ−3=2 Hz.

MANIKANTAN, PASCHALIDIS, and BOZZOLA PHYS. REV. D 112, 043004 (2025)

043004-2



has a decoupling radiusOð200MÞ, in which case the binary
could radiate away its eccentricity before it enters the LISA
band and before it inspirals to the separations that we
are concerned with (d < 30M). However, a thicker disk
(H=r ∼ 0.1, relevant for slim disks [65]) can have a
decoupling radius as small as 30M, allowing the binary
to sustain a higher eccentricity [64]. In fact, recent
Newtonian hydrodynamic studies of BH binaries argue
that eccentricity may be the norm for SMBBHs and can
reach values up to e ≃ 0.3–0.5 in observable GW bands
[66,67]. Thus, it is possible that at least a fraction of LISA
binaries will have nonzero residual eccentricities in-band.
Additionally, the presence of a third massive body, e.g.,
following a triple galaxy merger [68,69], can result in
binary eccentricity of order unity at relativistic separations
(relevant for LISA) through chaotic, nonhierarchical three-
body interactions (see Ref. [70] and references therein).
Furthermore, if the stochastic GW background comes

from an eccentric population of MBBHs, future PTA
experiments might detect eccentric MBBH merger events
[71]. Moreover, eccentric binaries can probe more relativ-
istic velocities than quasicircular binaries, thereby allowing
us to probe gravity in a regime not accessible by zero
eccentricity. The detection of even one SMBBH binary at
finite eccentricity could be a gold mine for understanding
relativistic astrophysics and gravity. Therefore, establishing
the effect of orbital eccentricity on accreting SMBBHs is
very important.
In this work we perform 3þ 1 fully general-relativistic,

magnetohydrodynamic simulations of accretion onto rela-
tivistic BBHs on eccentric orbits with initial eccentricities
of e ¼ 0.00, 0.17, 0.31, which are within the range
predicted by [66,67]. We focus on answering the following
key questions: (i) how is the measured mass accretion rate
and its periodicity affected by orbital eccentricity? (ii) How
is the measured jet luminosity and its synchrotron emission
affected by orbital eccentricity? (iii) Do eccentric binaries
at relativistic separations form persistent minidisks?
This paper is structured as follows: in Sec. II we outline

our numerical methods and diagnostics, in Sec. III we
describe our results, in Sec. IV we perform an approximate
radiative transfer calculation of synchrotron emission
within the jet, in Sec. V we discuss simultaneous GW
and EM emission from our models, and in Sec. VI we
summarize our findings.
Throughout, we adopt geometrized units in which

G ¼ c ¼ 1, where G is the gravitational constant and c is
the speed of light. Our spatial and time domains are
measured in units of M, where M is the Arnowitt-Deser-
Misner (ADM) mass of the spacetime. In the spatial domain2

1M ¼ GM=c2 and in the time domain3 1M ¼ GM=c3.

II. METHODS

A. Initial data

In this section we discuss how we prepare the spacetime
and matter initial data for our simulations.

1. Spacetime

We use the TwoPunctures thorn to prepare initial data
for the spacetime [72,73]. We initialize our BHs with no
spin and identical mass (q ¼ m1=m2 ¼ 1) at apoapsis.
We choose a major axis a=M ¼ 20 such that the initial
orbital separation is determined by the initial eccentricity,
d ¼ að1þ eÞ, which we target to be e ¼ 0, 0.15, 0.3. We
do this to ensure that the binaries have approximately the
same initial orbital period, which we measure to be the case
to within 10%. We introduce eccentricity into our BBH by
first computing the 3rd order post-Newtonian linear
momenta corresponding to a quasicircular BBH and then
adjusting their tangential component by a factor of

ffiffiffiffiffiffiffiffiffiffiffi
1 − e

p
,

where e is our target eccentricity. This approach would
result in actual eccentricity equal to the target eccentricity if
the binary was Newtonian. In our case this approach
produces a value for the eccentricity that is within
∼3–10% of the target value. Thus, once we set up initial
data, we evolve the BBH before measuring our eccentricity
(see Appendix A for details on how we measure the
eccentricity). In this work we do not iteratively try to find
the appropriate factor

ffiffiffiffiffiffiffiffiffiffiffi
1 − e

p
which yields our exact target

eccentricities, although this would be straightforward using
a bisection approach. The measured eccentricities for the
binaries evolved in this work are 0.00, 0.17, 0.31.

2. Matter and magnetic fields

We use the power-law torus solution for the initial
conditions of our CBD as previously described in [41]
and [55]. The torus would be an equilibrium solution
around a single BH with the same mass as the BBH
gravitational mass. We set the inner edge of the CBD at
r=M ¼ 18 with specific angular momentum of l ¼ 5.15.
These parameters are used to set the outer edge of the
disk at r=M ≃ 100. We use a Γ-law equation of state, with
Γ ¼ 4=3, which is appropriate for radiation pressure
dominated flows, even at 1=10 of the Eddington accretion
rate [74]. The initial vertical scale height of the CBD is
H=r ≃ 0.24, where r is measured from the center of mass of
the binary. We initialize our disk with a seed poloidal
magnetic field as in [55], with minimum initial plasma beta
β ¼ Pgas=Pmag ≃ 13. While the initial minimum of the
plasma beta chosen may be low compared to single black
hole accretion studies, it is consistent with previous
simulations in full general relativity. Moreover, simu-
lations with initial β ∼ 100 relax to β ∼ 10 through the
MRI [75]. Additionally, to resolve the MRI wavelength
with our chosen resolution, we are limited to stronger initial

2GM=c2 ¼ 1.48 × 107ðM=107M⊙Þ km.
3GM=c3 ¼ 49.25ðM=107M⊙Þ seconds.
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magnetic fields. Despite our lower initial β, the initial net
magnetic flux in the disk is only ∼3× higher compared to
an initial β ¼ 100, because the flux scales with b, while β
scales with b2. Thus, the net vertical flux in the disk is not
much larger than that typically adopted in large scale
simulations of accretion disks onto single black holes The
initial maximum magnetization in our disk (σ ≡ b2=2ρ) is
σ ≃ 4 × 10−5, where b is the magnitude of the magnetic
field measured by an observer comoving with the fluid
normalized by

ffiffiffiffiffiffi
4π

p
. Therefore, even with our lower initial

β the magnetic field is dynamically unimportant initially.
Due to the seeded magnetic field, our disks are unstable to
the magnetorotational instability (MRI) [76]. We have
checked that the wavelength of the fastest growing MRI
mode is smaller than the disk scale height, and that we
resolve this wavelength with at least 20 zones in the bulk of
the disk and a maximum of 50 zones at the inner edge of
the disk.

B. Evolution

We employ the 3þ 1 general relativistic, dynamical
spacetime magnetohydrodynamic (GRMHD), adaptive-
mesh-refinement (AMR) ILLINOISGRMHD code [77] within
the framework of the EINSTEIN TOOLKIT [78], which
employs the CACTUS/CARPET infrastructure for mesh refine-
ment [79,80]. ILLINOISGRMHD evolves the matter and
magnetic fields using the equations of ideal magnetohy-
drodynamics in flux-conservative form via a high-resolu-
tion shock capturing scheme based on the HLL Riemann
solver [81] and the piecewise-parabolic reconstruction [82].
These methods have been described in [77], and have
been extensively tested against other codes in [83]. For our
EM gauge choice, we utilize the generalized Lorenz
gauge condition from [64] and set the Lorenz gauge
damping parameter to ξ ¼ 8=M to remove spurious gauge
modes [84].
We evolve the spacetime by solving Einstein’s equations

of general relativity in the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) formalism [85,86], as implemented in
the LeanBSSN thorn [87]. We adopt the moving puncture
gauge conditions [88,89] with the shift vector parameter η
set to η ¼ 1.4=M.
We use a three-dimensional cartesian grid with the outer

boundary extending from −5120M to þ5120M in the x, y,
and z directions, with a total of 14 refinement levels. We
adopt CARPET [80] for adaptive mesh refinement (AMR),
which implements a box-in-box AMR scheme. We use
3 sets of nested refinement levels, two of which are
centered onto each puncture and one on the binary center
of mass. The grid spacing on the coarsest (finest) refine-
ment level is Δx ¼ 128M (Δx ¼ M=64). The adopted
resolution was based on: 1. requirements to resolve the
wavelength of the fastest growing MRI mode, and 2.
through a convergence study of the evolution of vacuum
binaries, ensuring that, at the chosen resolution, the orbital

separation and phase deviate by no more than Oð0.1%Þ
from our highest-resolution runs over the first four orbits.
We do not treat radiative feedback, heating, or cooling.

Finally, the fluid does not backreact onto the spacetime,
since the spacetime mass/energy content is dominated by
the SMBBH.
We evolved the e ¼ 0.00 and e ¼ 0.17 binaries out

to t=M ∼ 10; 000 (19 and 18 orbits, respectively) and the
e ¼ 0.31 binary to t=M ∼ 6500 (13 orbits). The e ¼ 0.31
binary inspirals significantly faster than our other cases,
which changes the orbital frequency rapidly. Since the
focus of this work is the quasistationary phase of the
accretion, we stop the e ¼ 0.31 simulation earlier.

C. Diagnostics

We adopt the same diagnostic tools as in [35] to measure
the rest-mass accretion rate (Ṁ), Hill sphere rest-masses
(MHill), and outgoing Poynting flux. We locate apparent
horizons with AHFinderDirect [90]. We use the pack-
age kuibit [91] for all our analysis.

1. Fourier Analysis

We perform Fourier analysis on time series, such as the
BBH rest-mass accretion rate, and jet luminosity. Here we
outline the steps of that Fourier analysis:
(1) Obtain the time series output from the simulation.
(2) Remove the running average of the time series to

remove any DC components.
(3) Window our signals using a Hann window.
(4) Zero-pad our signal such that the total number of

points in the signal is 218. This choice is arbitrary,
but ensures an even number of data points in the
signal.

(5) Perform a fast Fourier transform on the signal using
the scipy.fft function [92].

(6) Normalize the power spectral density (PSD) to a
maximum value of one and re-scale the frequency
axis by the orbital frequency.

2. Orbital frequency

We normalize all Fourier frequencies to the orbital
frequency of our BBHs. To compute the orbital frequency
in a gauge-invariant way, we use the GW signals generated
by our binaries, which we extract using the NPScalars
thorn of the Canuda suite [93,94]. In the quasicircular case,
the BBH orbital frequency equals 1=2 the frequency of the
l ¼ 2, m ¼ 2 gravitational wave mode. We compute this
from the first time derivative of the unfolded phase of the
l ¼ 2, m ¼ 2 gravitational wave strain, φ22, where the
orbital frequency is given by f22 ≡ ðdφ22=dtÞ. This fre-
quency remains approximately constant in time in our
quasicircular case. However, the GW frequency for eccen-
tric orbits has time dependence even on an orbital time
(higher frequency near pericenter and lower frequency at
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apocenter). Therefore, to recover the orbital frequency in
the eccentric cases—defined as the time between consecu-
tive pericenter passages—we perform a Fourier transform
of the f22 time series. This frequency oscillates on the
orbital timescale and its Fourier transform reveals the
orbital frequency of the binary. The orbital period of our
eccentric binaries evolves rapidly due to GW emission,
especially in our high eccentricity case (e ¼ 0.31) (see
Appendix A). Therefore, when we normalize Fourier
frequencies by the binary orbital frequency, we specify
the time at which we perform the Fourier transform and
measure the orbital period, which is the same time period
unless otherwise stated.

3. Hill sphere

The Hill sphere or sphere of gravitational influence
around a body is given by [95]

rHill ¼
rp
2

�
m1

3ðm1 þm2Þ
�

1=3
ð1Þ

where rp is the pericenter orbital separation, m1 is the mass
of the object whose Hill sphere we are determining, andm2

is the mass of the binary companion. As a reminder, in our
simulations m1 ¼ m2. Notice that these Hill spheres are
defined by the separation at pericenter, but the effective Hill
sphere is larger at apocenter. We use the volume contained
within a coordinate radius rHill to compute the rest-mass
of the minidisks around each BH, using the Volume-
IntegralsGRMHD thorn [96]. We note that the Hill
sphere radius calculation is neither gauge invariant nor
relativistic. These Hill sphere radii serve as a crude radius
of influence for each BH and they are only used to provide
some intuition when analyzing our simulations.

III. RESULTS

In this section we describe the evolution of the MHD
fluid, the accretion onto the BBH (Sec. III A), and the jet
outflows (Sec. III B).

A. Accretion onto the binary

After initializing the circumbinary torus around our
BBHs as described in Sec. II, we evolve the systems until
the accretion rate onto the BBH relaxes. As in previous
BBH-CBD studies in full general relativity, we define
relaxation (or quasisteady state) as when the amplitude
and phase of the accretion rate are approximately constant
[35,41,44,56]. The BHs continue to reside in a lower-
density cavity inside the CBD. The binary gravitationally
torques the CBD and matter near the inner disk edge falls
onto each BH through tidal streams (Fig. 1). The infalling
gas briefly circularizes around each BH, forming a mini-
disk, before being accreted. This process repeats and
modulates the mass accretion rate.

In Fig. 1, we plot the gas rest-mass density on the
x–y plane (the orbital plane of the BBHs). We indicate the
BH apparent horizons with black disks. The gas density is
normalized to the initial maximum gas density in the torus,
ρ0;max, which, for our e ¼ 0.00 binary, scales as4

ρ0;max¼1.6×10−11
� hṀi
0.1Ṁedd

��
M

107M⊙

�
−1
�

η

0.1

�
−1 g

cm3
:

ð2Þ

Here, hṀi is the average total accretion rate after it settles
(t=M > 3000), Ṁedd is the Eddington accretion rate, and
η is the radiative efficiency of the accretion flow. From left
to right, we present the e ¼ 0.00, e ¼ 0.17, and e ¼ 0.31
cases, respectively. The top row shows moments in the
simulation where the Hill spheres of the BHs are most filled
(t1) and the bottom row shows moments where the Hill
spheres are depleted (t2) (see the maxima and minima of the
dashed green lines in Fig. 2).
Figure 1 illustrates the quasiperiodic morphology of the

eccentric systems. In the e ¼ 0.00 case, the t1 and t2 panels
are not noticeably different. The approximately constant
orbital separation of the quasicircular binary allows more
persistent minidisk structures to form in the Hill sphere of
each BH. Despite that, the minidisks undergo quasiperiodic
oscillations in mass and accretion rate. Furthermore, the
cavity carved by the BBH has a persistent low density area,
with density ρ0=ρ0;max ∼ 10−3. For quasicircular binaries,
Newtonian 2D studies show that the cavity typically has a
radius of∼2a, where a is the BBH orbital separation. In full
GR it has been shown that the cavity radius is ∼a when
no cooling is applied, and ∼1.5a with cooling [41]. This
difference between 2D viscous studies and 3D MHD
studies can be explained primarily by the overflow of
the binary tidal barrier when the 3rd dimension appears.
With cooling, and therefore a thinner disk, the tidal torque
pushing matter away is stronger and the cavity begins to
resemble the larger cavity seen in 2D studies, see, e.g., [97].
In our eccentric cases the cavity radius is ∼a, but we plan to
further investigate the cavity properties for eccentric
binaries in a future work.
In the eccentric binaries, e ¼ 0.17 and e ¼ 0.31, the

difference between the t1 and t2 panels in Fig. 1 is
pronounced. In the top row of the eccentric binaries
(e ¼ 0.17, 0.31), there are minidisks of high density around
each BH. However, in the bottom row, these minidisks
are almost completely depleted. This can be explained by
the change in the relative size of the Hill sphere with respect
to the innermost stable circular orbit (ISCO) (Fig. 3,
more later).

4The e ¼ 0.17 and e ¼ 0.31 cases have the same scaling, but
the numerical factor in front of the scaling relation as in Eq. (2) is
1.8 × 10−11 and 2.6 × 10−11, respectively.
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In Fig. 2, we analyze the rest-mass accretion rate. In the
left column, we plot the time-dependent total rest-mass
accretion rate onto the BHs with a black solid line and plot
the rest-mass contained within the Hill sphere (as measured
at pericenter) with a dashed green line. In the right panels,
we plot the Fourier transform of the total rest-mass
accretion rate for the time range 3000 < t=M < 5500.
We choose this time interval such that the accretion rate
has reached a quasisteady state, but the interval is not so
long that the rapid inspiral of the e ¼ 0.31 binary changes
the orbital frequency appreciably, so we can use it to
normalize our periodograms. We fix this time interval for
comparison across all of the simulations. The dominant
frequency of the accretion rate variability for the quasicir-
cular binary is ∼1.4 × forb, and for the eccentric binaries is
their orbital frequency, f ∼ forb. This is consistent with
recent Newtonian hydrodynamic studies [49,51]. However,
in those studies, where the separation of the BBH is
>150M and hence rHill ≫ rISCO, it is possible that the
matter inflow time from magnetized minidisks is much

longer than the orbital period, which would quench the
accretion rate variability [35]. Furthermore, we observe
a secondary frequency at 2forb in the power spectrum of
both eccentric binaries. We can see this feature in the
timeseries by the double peaks in the early accretion rate
3000–5000M of the e ¼ 0.31 binary. The smaller peaks
occur when the binary is at apocenter and initially accretes
from the edge of the CBD, and the larger peak is at
pericenter. In other words, there are two accretion episodes
per orbit. However, this may be a transient feature of the
initial relaxation of the fluid; we need a longer term, wider-
separation eccentric binary study to establish if this feature
is robust. Therefore, we consider this secondary peak a
tentative finding.
The difference between eccentric and quasicircular

accretion variability can be explained by a change in the
mechanism that fills and depletes their Hill spheres. In the
quasicircular case, some works argue that the BHs fill their
Hill spheres at a frequency equal to the beat frequency of
binary orbit and a lump in the CBD, which is an m ¼ 1

FIG. 1. Rest-mass density (ρ0) contours of each simulation at two snapshots: when the Hill sphere rest-mass is maximum (t1, top row)
and minimum (t2, bottom row) (see maxima and minima of the green dashed line in Fig. 2). From left to right, we plot the eccentricities
e ¼ 0.00, 0.17, and 0.31. In each panel, we plot the gas rest-mass density normalized to ρ0;max, where ρ0;max is the maximum density
in the initial data and ρ0;max ¼ ð1.6; 1.8; 2.6Þ × 10−11ðṀ=0.1ṀeddÞðM=107M⊙Þ−1ðη=0.1Þ−1 g cm−3 for the e ¼ 0.00, 0.17 and 0.31
binaries, respectively. The quasicircular binary (e ¼ 0.00, left column) harbors minidisks with higher density around each BH
(ρ0=ρ0;max ∼ 1) which exist in a lower-density cavity (ρ0=ρ0;max ∼ 10−3) than in the eccentric cases. This minidisk and cavity structure
persists in time. The eccentric binaries (e ¼ 0.17, 0.31, center and right columns) also exist in cavities but the minimum density areas
(ρ=ρ0 ∼ 10−2) are less defined. Furthermore, they only have minidisks in the t1 snapshot. In the t2 snapshots, the minidisks are almost
completely depleted. The black disks indicate the BH apparent horizons.
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density mode [99,100]. However, this does not appear to be
the mechanism in our simulations as we do not observe a
strongly pronounced m ¼ 1 mode in the CBD’s rest-mass
density. Note that recent long-term radiation MHD studies
of BBH accretion from a CBD show that radiation feedback
reduces the appearence of a lump [101]. Empirically,
quasicircular binaries in the strong-field dynamical space-
time regime have been shown to have an accretion
frequency of f ∼ 1.4forb [see, e.g., [35,44,49] ], which
we confirm in this study. In our simulations, it appears that
the eccentricity of the CBD inner edge (or cavity) drives
this periodicity, rather than a lump. Whenever the BHs
approach the minor axis of the elliptical inner disk edge,
matter is stripped off the CBD to form accretion streams.
This sets the refilling frequency of the minidisks. However,
we do not investigate this further, leaving it for a future
study. Once filled, the BHs accrete the mass in their Hill
sphere before it has time to refill, therefore setting the
periodicity of accretion at the refilling frequency. In other
words, the inflow timescale of the minidisk is shorter than
the refilling timescale. At larger BH separations this
paradigm can change, as the minidisks will be significantly
larger and the inflow timescale can be comparable to, and
possibly significantly longer than, the refilling timescale
[35], thereby suppressing the accretion rate variability
significantly.

On the other hand, the eccentric binaries deplete their
minidisks at their orbital frequency. We can motivate
this behavior by the change in Hill sphere radius on the
orbital period. As the binary approaches pericenter, the Hill
spheres shrink closer to the ISCO of each BH. Therefore,
the BH accretes the matter from its minidisk and any
accretion stream plunges into the BH before it has time to
circularize into a minidisk. This can be observed in Fig. 3
where we show rest-mass density contours for our e ¼ 0.31
simulation just after apocenter (left), about a quarter of an
orbit after apocenter (middle), and near pericenter (right),
all after the accretion rate has relaxed. We plot the
separation-dependent Hill sphere radii with dashed white
lines and the ISCO with the solid green lines. We indicate
the BH horizons with black disks. At apocenter (largest
separation) the binary is in close proximity to the CBD and
will refill its Hill sphere, which is at its largest (r ≃ 6.5M
for e ¼ 0.17, r ≃ 7.2M for e ¼ 0.31). At pericenter, the
ratio of the Hill sphere radius (r ≃ 4.6M for e ¼ 0.17, r ≃
3.8M for e ¼ 0.31) to the ISCO radius (r ≃ 2.475M) is
almost unity. Note that the above mentioned Hill sphere
radii correspond to apocenter and pericenter at t ¼ 0. By
the time the accretion rate relaxes (reaches a quasisteady
state), the eccentric binaries have inspiraled considerably
and the Hill spheres have become even smaller. See the
right panel in Fig. 3 where the ISCO and Hill radius are

FIG. 2. Left column: total rest-mass accretion rates (solid black line) onto both black holes and total rest-mass contained within the BH
Hill spheres (dashed green line) vs time. Both quantities normalized by their averages for t > 3000M. Right column: power spectral
density (PSD) of the Fourier transform of the rest-mass accretion rate with the frequency normalized to the orbital frequency. For
comparison, the Fourier transform is performed over the time period t ¼ 3000–5500M for all three binaries, limited by the rapid
evolution of the e ¼ 0.31 binary orbit. The plots demonstrate that the dominant frequencies of the accretion are variability are ∼forb for
eccentric binaries and ∼1.4forb for quasicircular binaries. The dominant frequency is insensitive to our choice of over which time period
we perform the Fourier transform, however, the secondary peak at 2forb in the eccentric cases vanishes after 5000M.
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nearly identical at apocenter (t=M ¼ 4290.3). Therefore,
matter from the accretion streams plunges into the BHs
before it can circularize into minidisks. This both explains
the disappearance of minidisks at pericenter (Figs. 1 and 3)
and explains the peaks in accretion rate that correspond to
pericenter passages (Fig. 2).
Additionally, when the accretion rate has settled

(t > 3000M), the pericenter distance of our eccentric
binaries e ¼ 0.17, 0.31 is dmin ∼ 11M and 14M, respec-
tively. No persistent minidisks have been found in previous
fully general-relativistic MHD simulations of quasicircular
binaries at such small separations [41,55]. A similar Hill-
sphere-to-ISCO radius ratio explains the lack of minidisks
around retrograde spinning BHs and the significantly
smaller minidisks for nonspinning BHs in quasicircular
binaries [44]. This interplay between the Hill sphere radius
and ISCO radius occurs on the orbital frequency for
eccentric binaries and sets the rest-mass accretion rate
periodicity. However, if the eccentric binaries are placed
at large enough separation such that, at their pericenter
passage, rhill is significantly larger than rISCO, e.g.,
rp ≳ 20M, minidisks may persist throughout the orbit.
This requires further study that we will pursue in a
future paper.

B. Jet launching

When ideal magnetized plasma accretes onto a BH, it
carries with it a magnetic field that threads the BH event
horizon. The interaction of large-scale magnetic fields with
the spacetime angular momentum can launch relativistic

jets; this is typically referred to as the Blandford-Znajek
(BZ) mechanism [102]. The energy needed to launch these
jets can be provided by the accretion power, the BH
rotational kinetic energy, and/or, as in our case, by the
orbital kinetic energy of the BBH (as is the case in force-
free environments [45]).
Therefore, even though our BHs are nonspinning, we

observe jet launching along the z-axis of our simulations
(the BH orbit is in the x–y plane) consistent with previous
studies of nonspinning binary black holes [41,55,64,103].
In Fig. 4, we plot the fluid magnetization (σ ≡ b2=2ρ0) on a
color scale where bright colors are high fluid magnetization
and darker colors are low fluid magnetization. On top of
the contours, we plot directed streamlines of the magnetic
field (using the magnetic field components Bx and Bz

measured by a normal observer). We choose moments in
our simulation such that the BHs are on the x-axis, and we
can plot the x–z plane.
At z=M ¼ 0 and x=M ¼ �10, we observe two strongly

magnetized areas of σ > 1 at the base of the jets launched
by each BH. Spinning BBHs can have a fluid magnetiza-
tion that is much greater [35]. The jet regions, defined by
the presence of collimated outflows, extend vertically along
the z-axis from each BH. At z=M ≳ 25 the jets from each
BH interact and eventually merge to form a single structure.
The width of the merged jet increases with vertical distance
z=M; initially the width is defined by the BH separation
and then far away from the BBH (z=M ∼ 200) the jet has
width ∼100M. Within the jet regions the magnetic field is
ordered, with vertical field lines extending from the BH
horizon out to z=M > 200.

FIG. 3. Contours of rest-mass density (ρ0) for our e ¼ 0.31 simulation, normalized by the initial maximum density
ρ0;max ¼ 2.6 × 10−11ðṀ=0.1ṀeddÞðM=107M⊙Þ−1ðη=0.1Þ−1 g cm−3. The left panel corresponds to just after apocenter (t=M¼4120),
the middle panel as the binary approaches pericenter (t=M ¼ 4220), and the right at pericenter (t=M ¼ 4300). Around one of the BHs
we indicate the innermost stable circular orbit (ISCO) with a solid green line and the Hill sphere radius with a dashed white line. Note
that the ISCO coordinate radius is not a gauge invariant quantity. Here, it is set to its value in puncture coordinates (the gauge conditions
we adopt) of a single nonspinning BH [98]: rISCO ≃ 4.95m1 ≃ 2.475M. We indicate the BHs horizons with black disks. The left panel
shows that the accretion streams approaching the BHs form minidisks, which begin to be accreted in the middle panel, and are depleted
on the right because the Hill sphere and ISCO radii almost coincide.
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As we move radially outward from x ¼ 0 we enter the
bulk of the CBD, where gas density is high and fluid
magnetization is roughly σ ∼ 10−3 to 10−5. In the CBD
(x > 25M), there is a turbulent magnetic field.
In Fig. 5, we plot a measure of the jet power efficiency,

Ljet=hṀi, where Ljet is the Poynting luminosity measured
through a coordinate sphere at r=M ¼ 200 and hṀi is the
average mass accretion rate computed over t=M > 3000.
Since the disk only extends out to r=M ∼ 100, the Poynting
flux through this sphere reliably represents the total jet
power. In the top panel, we plot Ljet=hṀi as a function of
time. The quasicircular binary is plotted with the thick
yellow line, the e ¼ 0.17 binary with the brown line, and the
e ¼ 0.31 binary with the thin black line. As matter accretes
and the initial data relaxes onto the BHs, the jet luminosity
increases until it reaches a quasisteady state at t=M ∼ 3700.
Then, the eccentric binaries begin to exhibit variability on
their orbital timescale. For a 107M⊙ BBH accreting at 10%
Eddington, the peak jet power corresponds to a jet power of
∼1043 erg s−1. In the bottom panel of Fig. 5, we plot the

Fourier transform of these signals. The quasicircular binary
(e ¼ 0.00) has a dominant 0.2forb frequency in its jet power.
While longer evolutions are necessary to confirm this
periodicity, this is consistent with previous studies that show
the Poynting luminosity variability is not the same as the
accretion rate variability [35,104]. We note that Ref. [49]
suggested that the jet luminosity variablity would reflect the
orbital frequency on the grounds that the accretion rate
periodicity for eccentric binaries matches the orbital period.
However, this was not supported by prior works that account
for MHD effects in GR. Here, we demonstrate explicitly that
the eccentric binaries (e ¼ 0.17, 0.31) exhibit jet luminosity
periodicity f ∼ forb. This is the first demonstration that an
accreting eccentric BBH has Poynting luminosity variability
equal to its accretion rate variability.

IV. JET SYNCHROTRON EMISSION

Relativistic electrons within the dual jet can produce
synchrotron emission across the EM spectrum [see, e.g.,
[105–107] ]. In this section, we present synthesized spectral

FIG. 4. Contours of the fluid magnetization, σ ≡ b2=2ρ0, in log scale. Brighter colors indicate a stronger fluid magnetization. We
overlay directed magnetic field lines in white. In each snapshot, the BHs are on the x-z plane at x ∼�10M and have strong fluid
magnetization directly above and below them with magnetic field lines threading each apparent horizon. From left to right, we plot the
three simulations with orbital eccentricities e ¼ 0.00, 0.17, 0.31. All three systems form a dual jet that merges into a single structure for
z≳ 25M and are mildly relativistic (Γ ∼ 1.15).
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energy distributions (SEDs) of the jet synchrotron emission
from our simulations (Sec. IVA) and their time-dependence
(Sec. IV C).
Our binaries launch dual jets that merge within a height

of 25M above the orbital plane (see Fig. 4). Interaction
between the two jets can lead to two interesting phenom-
ena, among others: the jets can bend at this interaction
point, forming a kink instability that results in magnetic
reconnection and the efficient acceleration of particles
into a nonthermal distribution [108,109]. Furthermore,
the merger of the two jets could give rise to a large-scale
magnetic reconnection layer where magnetic energy could
be efficiently dissipated into a power-law particle energy
distribution [110]. Particle-in-cell (PIC) simulations have
shown that postreconnection energies are shared, with
varying ratios, between the magnetic field, electrons,
protons, and positrons, with the electron energy density
ranging from 10–100% of the magnetic energy density
[111]. Motivated by these results, in our synchrotron
radiation postprocessing we adopt a power-law energy
distribution and use an electron energy density equivalent
to 10% of the magnetic energy density.

The details of the synchrotron modeling and radiative
transfer equation integration are presented in Appendix B.
We summarize our key assumptions here:
(1) As is common, and motivated by the aforementioned

studies, we adopt a power-law electron distribution
throughout the jet.

(2) We determine the electron power-law distribution by
setting the electron energy density equal to 10% of
the magnetic field energy density and the number
density of electrons equal to the number density of
protons (i.e. charge neutrality).

(3) We begin integrating at r=M ¼ 50. This is because
we do not perform a general relativistic calculation,
therefore our integration of the radiative transfer
equation must be in approximately flat spacetime.

(4) We adopt the “fast light” approximation; we solve
the radiative transfer equation on a slice of constant
coordinate time. This approximation is valid when
the medium does not change much while light
travels through it. In our calculations, it is valid
for the optically thin frequencies, which are the main
focus here.

FIG. 5. Top: Poynting luminosity normalized to the average accretion rate Ljet=hṀi vs time for each binary. The e ¼ 0.00, e ¼ 0.17,
and e ¼ 0.31 cases are represented with a thick yellow line, brown line, and thin black line, respectively. The jet luminosity is computed
via a surface integral of the Poynting flux extracted on a sphere with coordinate radius r ¼ 200M. The time-averaged accretion rate hṀi
is measured for t > 3000M. Assuming a 107M⊙ BBH accreting at 10% Eddington, we measure a peak Poynting luminosity of
∼1043 erg s−1. The Poynting luminosity does not reach peak power until ∼4000M, after which it begins to oscillate in the eccentric
cases. Bottom: power spectral density of the Fourier transform of the Poynting luminosity shown in the top panel for t=M > 4000, with
the line style and color representing the same cases. The Fourier transform is performed over the time interval 4000 < t=M <
7000ð6500Þ for the e ¼ 0.17 (e ¼ 0.31) binary. The eccentric binaries exhibit Poynting luminosity variability with dominant frequency
f ∼ forb, similar to their accretion rates. The quasicircular binary has dominant frequency f ∼ 0.2forb.
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(5) We do not treat special relativistic effects. This
assumption is consistent with the fact that the fluid
bulk velocity in the incipient jets in our simulations
is only mildly relativistic (Γ ∼ 1.15), especially at
the low heights above the BHs which dominate the
synchrotron emission in our calculations.

Lastly, we report results only from the viewing angle of
θ ¼ 0, in other words, looking down the barrel of the jet.
We solved the radiation transport equation for other view-
ing angles and found that the shape and variability of the
synchrotron spectrum remain invariant.

A. Effect of binary mass and power-law choice on SED

In this subsection, we explore the effect of total BBH
mass and power-law of the electron distribution on the
calculated synchrotron SED. For the analysis presented
here, we set the Eddington factor, ξ≡ hṀi=ṀEdd, and
radiative efficiency, η, to ξ ¼ 0.1 and η ¼ 0.1, respectively.
We compute the average accretion rate for t > 3000M. We
note that our adopted accretion rate of Ṁ ¼ 0.1ṀEdd to
estimate the synchrotron luminosity may be high enough to
cool the accretion disk; however, as we outline below, it is
straightforward to scale our results to any accretion rate.

FIG. 6. SEDs of synchrotron emission from the SMBBH dual jet. We show the specific luminosity Lν as a function of emitted
frequency νem in the source frame for different parameters. We vary the SMBBH mass in each column; from left to right we select
Mtot ¼ 107; 108; 109M⊙. The peak luminosity increases with mass (Lν ∝ M3=2) and the peak frequency decreases with mass (also
known as the synchrotron self-absorption frequency, νssa). We vary the choice of power-law in each row; from top to bottom we show
p ¼ 2.5, 3, 4, respectively. The peak frequencies are approximately the same in each each column, but the peak luminosities drop as p
increases. Lastly, we have also reported the integrated bolometric luminosity of the SEDs in each panel. We note that the peak luminosity
would increase by an order of magnitude for spinning BHs, and could go as high as two more orders of magnitude for a full integration
down to the BH horizons.
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In Fig. 6, we outline the impact of the power-law and
BBH mass by performing a radiative transfer calculation
through the jet region for a range of masses, Mtot ¼
107; 108; 109M⊙ (columns), and electron distribution
power-laws, p ¼ 2.5, 3, 4 (rows) [110,112]. In each panel,
we plot the specific luminosity of our BBHs in the source
frame as a function of frequency where e ¼ 0.00 is the thick
yellow line, e ¼ 0.17 is the brown line, and e ¼ 0.31 is the
thin black line. In the figure, it appears that the e ¼ 0.31 is
slightly more luminous that the other cases. However, this is
because its average accretion rate after it settles is lower for
the same initial disk density and binary mass. Therefore,
when we normalize the mass accretion rate to Ṁ ¼ 0.1Ṁedd,
its luminosity is higher. This could depend on the initial data
chosen, which we will explore in the future.
As we demonstrate in Fig. 6, the specific luminosity

increases with increasing BBH mass. It is possible to
understand this behavior from analytical considerations of
the synchrotron emissivity. In particular, we analytically
find that the emission scales with the BBH mass as follows

Lν ∼ jνr2 ∝
�
ξ

η

�
3=2

M3=2; ð3Þ

For M ¼ ½107; 109�M⊙, our radiative transfer calcula-
tions show that the SED peak luminosity is Lν≃
½1023; 1026� erg s−1, in complete agreement with the
expected Lν ∝ M3=2 scaling.
Furthermore, as the mass changes inM ¼ ½107; 109�M⊙,

the peak frequency falls from νssa ≃ 5 × 1013 Hz to
νssa ≃ 1 × 1013 Hz. We use the notation νssa to indicate
the synchrotron self-absorption frequency, i.e., the fre-
quency above which the matter becomes optically thin.
This behavior can also be analytically derived by finding
the frequency at which the optical depth τ ¼ 1. We find the
following scaling for νssa with the mass, which matches our
radiative transfer calculations

νssa ∝
�
ξ

η

� pþ6

2ðpþ4Þ
M− pþ2

2ðpþ4Þ: ð4Þ

Notice that for p > 2, the above scaling is very weakly
dependent on p.
As we increase the power-law from p ¼ 2.5 through

p ¼ 4, the peak specific luminosity for M ¼ 107M⊙ drops
from Lν∼1024 ergs−1Hz−1 to Lν ∼ 1015 erg s−1Hz−1. This
is a consequence of how we determine the density constant
in the power-law distribution [see Eqs. (B3)–(B8)]. As the
power-law increases, the fraction of electrons at the high-
energy tail of the distribution falls, which causes the
luminosity to drop.
We integrate the SEDs to determine the bolometric

synchrotron luminosity of the BBHs and find that the
M ¼ 107M⊙, p ¼ 2.5 BBH has a total synchrotron

luminosity of Lbol ¼ 7 × 1038 erg s−1. Reference [35]
showed that spinning BBHs can produce a jet Poynting
luminosity that is 10 times greater than what we report in
Fig. 5. Thus, we expect that endowing the BHs with spin
would substantially increase the bolometric synchrotron
luminosity we find from our synchrotron SEDs.

B. Detectability of synchrotron emission

The frequencies reported here are within the observing
capabilities of NIRCam and MIRI on the James Webb Space
Telescope [113,114], the upcoming Rubin Observatory, the
Legacy Survey of Space and Time (LSST), and the Roman
Space Telescope [115]. However, the bolometric luminos-
ities we report place limits on the distance our predicted
synchrotron signals can observed at (see Ref. [59] for details
of these calculations). Using the sensitivities of NIRCam, we
estimate that NIRCam could observe a 107M⊙ BBH with
p ¼ 2.5 out to ∼0.2 Gpc, which corresponds to z ∼ 0.04
assuming standard ΛCDM cosmology. Whereas, it could
observe a 109M⊙ BBH out to ∼7 Gpc (z ∼ 1.1) [113,116].
All these distances would be ∼10× greater (z ∼ 7) if we
integrated from 20M (where the synchrotron emission is
even stronger as we discuss below) instead of 50M and took
into account the increase in jet power from spinning BHs. Of
course, to fully determine detectability of the emission at the
frequencies discussed here we would have to consider a
comprehensive model that involves emission from the CBD
and the minidisks too, which will be the topic of future work.
From the pressure in our simulations, we estimated the ion
temperature within the CBD to be of Oð106 KÞ. Therefore,
the thermal emission frequencies areOð1016 HzÞ, consistent
with previous relativistic works (see, e.g., [103]). Such
frequencies are Oð100Þ times larger than our reported peak
synchrotron frequencies. Therefore, we expect our predicted
nonthermal synchrotron spectrum to be more luminous and
distinguishable from the thermal spectrum around the peak
synchrotron frequencies. However, a full general-relativistic
ray-tracing and radiative transfer of these models are
necessary to decipher the exact emission from these systems.

C. SED time evolution

We performed our synchrotron radiative transfer calcu-
lation within the jet with a cadence of ∼3.6GM=c3 and
produced SEDs for each snapshot of constant coordinate
time. In Fig. 7, we plot the time-dependent SED (left
column) and its frequency-binned Fourier transform (right).
From top to bottom, we present the quasicircular (e ¼ 0.00)
and eccentric (e ¼ 0.17 and e ¼ 0.31) binaries. The SEDs
are all calculated assuming a 107M⊙ BBH accreting at
10% Eddington, and an electron distribution with power-
law p ¼ 2.5 and electron energy density 10% of the
magnetic energy density.
In the left column of Fig. 7, we describe the time-

dependent SEDs with a 2D color map, where the y-axis
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indicates emission frequency and x-axis indicates increas-
ing time in days. The brighter yellow color indicates higher
specific luminosity (∼1024) and darker blue/black colors
indicate lower specific luminosity (∼1021). The quasicir-
cular binary shows some variability with time, but without
any pronounced structure. The eccentric binaries, however,
demonstrate bright fringelike structures where emission
peaks. This is most pronounced in the e ¼ 0.31 binary
where we see constantly repeating fringes. Additionally,
this variability only appears above the synchrotron self-
absorption frequency νssa ∼ 8 × 1013 Hz, in the optically
thin regime. Below νssa, in the optically thick regime,
there is no clear variability. Furthermore, the eccentric
cases appear to spend more time in a “low” state, where
the synchrotron emission is at a minimum, than in a
“high” state, where the synchrotron emission peaks.

Our calculations predict that a smoking-gun synchrotron
signature of more eccentric binaries is that they spend
longer time in the low state than in the high state. This is
consistent with eccentric binaries spending more time at
apocenter than pericenter.
In the right column of Fig. 7, using the measured orbital

frequencies (Sec. II C 2), we plot the EM frequency
dependent Fourier transforms of the SEDs. The y-axis
describes frequency of the EM spectrum and the x-axis is
the frequency of the variability of the specific luminosity.
The color map indicates the strength of the PSD, where
brighter colors are higher PSD. The eccentric binaries both
exhibit variability of f ∼ forb in the optically thin regime
(where ν≳ νssa), which is consistent with the variability of
their rest-mass accretion rates (Fig. 2) and their Poynting
fluxes (Fig. 5). The quasicircular binary also exhibits

FIG. 7. Left: frequency of the synchrotron SED vs time for the e ¼ 0.0, e ¼ 0.17, and e ¼ 0.31 (top to bottom) BBHs. The color map
is the specific luminosity with brighter yellow colors indicating a higher luminosity and darker, bluer colors indicating lower luminosity.
Right: PSD of the Fourier transform of the frequency-binned SED, where y-axis is emission frequency, x-axis is the periodicity
frequency normalized by the orbital frequency forb, and the color map indicates the strength of the PSD. The PSD shows that only the
optically thin region of the synchrotron SED exhibits variability (ν≳ 1014 Hz). Eccentric binaries have dominant frequency at their
orbital frequency ∼forb and the quasicircular binary of ∼1.6forb, which approximately matches their accretion rate periodicity. As in
Fig. 5, we perform the Fourier transform for the time period t > 4000M (t > 54.7 hours), with an upper limit of 7000M (96 hours) and
6500M (89 hours) for the e ¼ 0.17 and e ¼ 0.31 binaries, respectively. The gray shaded region in the bottom left panel indicates where
the e ¼ 0.31 simulation was stopped because the binary had inspiraled substantially compared to the other cases.
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periodicity at ∼1.6forb, approximately consistent with its
rest-mass accretion rate (∼1.4forb). There are also secon-
dary harmonics at ∼0.9, ∼1.1, and ∼1.35forb.
We point out that our reported results are not without

limitations. The exact values of the luminosities and peak
synchrotron frequencies will change with a more careful
calculation due to gravitational redshift, among other rela-
tivistic effects. However, the qualitative features we report,
such as order of magnitude and variability we observe in the
optically thin synchrotron regime, are robust and a direct
consequence of the varying magnetic field energy density in
the jet due to eccentricity. Furthermore, the variability of the
eccentric binaries is consistent across choice of power-law,
mass, accretion rate, and radiative transfer start point,
suggesting that variability on the orbital timescale is a robust
feature of nonspinning eccentric binaries with jets and a
power-law electron distribution (with electron energy density
determined by the magnetic field). By contrast, the SED of
the quasicircular binary does not have a consistent dominant
frequency in its Fourier transform across the choice of
power-law. Furthermore, if we start the radiative transfer at
lower heights in the jet, e.g. z=M ∼ 20, the frequency of
variability changes for the quasicircular binary but is
unchanged for the eccentric binaries.
Finally, we note that the fast-light approximation, where

our rays travel through the medium at an instant of time, is
not valid for the optically thick synchrotron spectrum,
ν≲ νssa. However, the variability we report for the optically
thin synchrotron ν≳ νssa is not affected by this approxi-
mation. This is because the jet regions for z≳ 20M remain
approximately unchanged over a light-crossing time—the
timescale over which optically thin photons travel through
the jet.

D. Effect of integration starting point

In the previous sections, we reported results where we
only integrate from z > 50M for self-consistency with our
approximations for our radiative transport calculations.
We also tested integrations that began at z ¼ 30M and
z ¼ 20M. We find that starting at lower heights increases
the peak specific luminosity 3× (for z ≥ 30M) and 10× (for
z ≥ 20M). Moreover, starting at lower z=M shifts the SED
toward higher frequencies by a factor of ∼2. However, the
shape of the SED and the variability we report in Fig. 7 for
the eccentric binaries is invariant with the integration start
point. On the other hand, the quasicircular binary exhibits
variability at the orbital period, but this would need to be
confirmed with a fully general-relativistic radiative transfer
calculation. We expect curved and dynamical spacetime
effects to play progressively more important role for
heights z=M ≲ 20, and for this reason we do not perform
our radiation transport calculations for z=M ≲ 20. Despite
that, we expect that even when one includes these regions,
the shape of the SED and the variability we report will
remain robust.

V. COINCIDENT GW AND EM SIGNALS

Thus far, we have described novel EM signatures of
the accreting binary systems we simulate. However, our
simulations also produce self-consistent gravitational
waves (GWs) associated with the inspiral of SMBBHs.
In this section, we present an analysis of multimessenger
signals of the eccentric SMBBH systems we simulated.
In Fig. 8, we demonstrate the simultaneous GW and EM

emission from our SMBBHs by plotting the GW strain
(top row) and integrated optically thin synchrotron emis-
sion (bottom row) for our e ¼ 0.17 (left column) and
e ¼ 0.31 (right column) binaries. In the top row, we plot the
amplitude of the l ¼ 2, m ¼ 2 mode of the GW strain,
jh22j, scaled with the distance r vs retarded time (tret). In the
bottom row, we plot the optically thin synchrotron lumi-
nosity integrated for ½ν∈ 8 × 1013 Hz; 8 × 1014 Hz� vs tret.
This frequency range samples the SED near the peak
frequency but solely in the optically thin regime, which
is variable on the orbital timescale (Fig. 7).
We define the retarded time as tret ≡ t − r0=v, where t is

the coordinate time, r0 is the point where the extraction
of the EM or GW signal is performed, and v the speed
of propagation of information. For GWs, r0 is the radius of
extraction of the GW signal and v ¼ c. For the synchrotron
emission r0 is the height z at which we start the integration of
the radiation transfer equation because, in the fast light
approximation, the synchrotron signal propagates to infinity
instantaneously, but disturbances in the jet that affect the
synchrotron calculation propagate to z in finite time. This
time is set by the characteristic velocities in the jet. So, for
the synchrotron signal, we take v ¼ vjet. Since there is no
unique way to define a jet velocity, we define vjet via the time
shift necessary to align the phase of Poynting luminosity
light curves extracted at different radii in our simulations
(e.g., Fig. 5 but extracted at r=M ¼ 100; 130; 150… and
adjusted in time by δr=vjet). Doing that, we estimate the jet
velocity to be vjet ∼ 0.5. This jet speed is likely an
overestimate of the jet speed for z ≤ 50M because we
extract the jet Poynting luminosity at z≳ 100M, where
the jet has accelerated to higher velocities compared to
z ≤ 50M. However, we emphasize that this is not the only
way to measure jet velocity. If, instead, we choose to average
the fluid velocity in highly magnetized regions at the base
of the jet, we find that the jet velocity is vjet ∼ 0.1–0.2.
Regardless, the calculation of the retarded time for both the
EM and GW signals is only approximate and is only meant
to help gain some understanding on the coincidence of GW
and EM signals we expect from these sources.
In the e ¼ 0.17 binary (left column in Fig. 8), we find

that the GW bursts precede the EM bursts by about
t=M ∼ 100 or t ∼ 1.4ðM=107M⊙Þ hours. If we instead
set vjet ∼ 0.2, we find that the EM and GW peaks line
up almost exactly. In the e ¼ 0.31 binary (right column in
Fig. 8), using vjet ¼ 0.5 as determined by the Poynting
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luminosity measurements, we find that the GW and EM
bursts happen almost simultaneously; in certain cases the
GW bursts marginally precede the EM bursts (see the
second, third, and fourth peaks). The key takeaway from
this plot is that the time period between successive bursts is
the same for both the GW and EM synchrotron emission.
This is the defining feature of binaries that have non-
negligible eccentricity.
A fully general-relativistic radiative transfer calculation

free of the fast-light approximation down to the BBH
horizons is necessary to draw robust conclusions on the
simultaneity of, or lag between, the time of arrival of the
EM and GW bursts. However, our main conclusion here is
robust: binary eccentricity should manifest itself such that
the time period between successive bursts is the same for
both the GW and EM synchrotron emission.

VI. SUMMARY AND DISCUSSION

In this work, we reported results from the first systematic
investigation of magnetohydrodynamic accretion onto
eccentric BBHs in full 3þ 1 general relativity. We explored
eccentricities of e ¼ 0.00, 0.17, and 0.31 at a binary major
axis of a=M ¼ 20. We simulated the e ¼ 0.00 and 0.17
binaries out to t=M ∼ 10; 000 (19 and 18 orbits, respec-
tively) and the e ¼ 0.31 binary to t=M ∼ 6500 (13 orbits).
We embedded the binaries in the central cavity of an

initially geometrically thick torus which we seeded with a

poloidal magnetic field to render it unstable to the magneto-
rotational instability. This instability leads to turbulence in
the disk and acts as an effective viscosity that drives
accretion onto the binary. Tidal streams from the inner-
edge of the CBD fill the Hill spheres of the BHs to form
intermittent minidisks which quickly accrete in the eccen-
tric cases, but are more persistent in the quasicircular case.
This process periodically repeats. Accretion of the mag-
netized matter also enables the BHs to launch collimated
outflows—jets—despite the individual BHs not spinning.
Our key findings are listed below:
(1) The accretion rate onto eccentric binaries varies

with time and exhibits periodicity with frequency
f ∼ forb, unlike quasicircular binaries whose accre-
tion rate variability exhibits peak periodicity at
f ∼ 1.4forb.

(2) Quasicircular binaries at separation d ¼ 20M have a
persistent minidisk structure throughout their orbit.
However, eccentric binary minidisks are quickly
depleted at pericenter for the relativistic separations
we study here. Consequently, quasicircular binaries
have persistent nodes of low density in their cavity
that are an order of magnitude less dense than the
cavity of eccentric binaries.

(3) Eccentric binaries launch jets with a Poynting
luminosity that exhibits periodicity with frequency
f ∼ forb, while that of quasicircular binaries exhibits
periodicity with f ∼ 0.2forb. However, the latter

FIG. 8. Top row: we plot the amplitude of the l ¼ 2, m ¼ 2 mode of the gravitational wave (GW) strain, jh22j, normalized by the
distance r=M, as a function of retarded time. Bottom row: we plot the synchrotron luminosity integrated for the frequency range
8 × 1013 Hz < ν < 8 × 1014 Hz, as a function of retarded time. This frequency range samples the optically thin synchrotron emission
which exhibits robust variability (see Fig. 7). The time axis is normalized to a 107M⊙ binary, as this is the chosen mass for the
synchrotron emission plotted. The GW emission exhibits peaks due to binary eccentricity; we denote these peaks with vertical
translucent gray lines on both the GWand EM panels. The e ¼ 0.31 binary shows almost perfect alignment between GWand EM bursts,
whereas the e ¼ 0.17 binary shows about a 100M ∼ 1.5ðM=107M⊙Þ hours delay from GW burst to EM burst.
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variability is not as pronounced and requires longer
simulations to confirm.

(4) Optically thin synchrotron emission from the jet
exhibits variability f ∼ forb for eccentric binaries.
This variability is agnostic to the choice of electron
distribution power-law as long as we determine the
electron energy density to be a fraction of the
magnetic energy density.

(5) The delay between consecutive gravitational wave
bursts and the delay between consecutive optically
thin synchrotron emission bursts is the same. This is
a smoking gun signature of SMBBHs with non-
negligible eccentricity.

Our suite of simulations and the results derived from them
are most applicable to sub-Eddington SMBBHs as we do not
include radiation feedback. The accretion rate periodicity we
find for quasicircular binaries, f ∼ 1.4forb, is consistent with
previous studies. The periodicity of the eccentric binaries,
f ∼ forb, however, is a new result that we first reported in
[59] for e ¼ 0.31, and have confirmed here with an even
lower value of eccentricity e ¼ 0.17. This periodicity is
driven by pericenter passages, where the Hill sphere of each
BH shrinks and approaches the size of the innermost circular
orbit of each BH. This drives accretion onto each horizon.
Additionally, the peaks in accretion rate correspond directly
to pericenter passages, which further supports this idea. It is
reasonable to expect that there is a threshold value for the
eccentricity above which binaries exhibit periodicity on
the orbital frequency and below which binaries exhibit
periodicity at 1.4× the orbital frequency. It is also possible
that the periodicity decreases continuously between
1.4 × forb and forb as e increases from 0 to a threshold
value. However, we do not establish at which value of e this
occurs in this work. Furthermore, we find that the Poynting
luminosity of eccentric BBHs oscillates at the orbital
frequency, consistent with its accretion rate periodicity.
This is in contrast to quasicircular binaries where we find
a periodicity of ∼0.2forb and other studies find varying
periodicities [35,104].
Additionally, we perform an approximate radiative trans-

fer calculation of the jet synchrotron emission assuming the
existence of electrons with a power-law energy distribution.
We find that the optically thin synchrotron emission has
variability consistent with the binary orbital frequency. This
variability is insensitive to the choice of electron distribu-
tion power-law. However, as we found in [59], we also find
that the variability is sensitive to how we set the energy in
the power-law distribution. If we do not assume that the
electron and magnetic energy density are linked, then
variability is not as clear. Observations of eccentric binaries
that confirm or deny jet variability for nonthermal electrons
could give us further insight into how electron distributions
adapt to changing magnetic field energies. Nevertheless,
the equipartition between the electron energy and magnetic
field energy is well-established [117–119]. In addition to

the periodicity that matches the orbital frequency, a
smoking-gun signature of the emission from eccentric
binaries is that they spend more time in a low state, where
the synchrotron emission is at a minimum, than in a
high state, during which the synchrotron emission peaks.
A second smoking-gun feature is the coincident EM and
GW bursts from the eccentric binaries. While a more
careful calculation is needed to establish these bursts as
simultaneous, a unique feature of eccentric binaries is that
the time between their successive synchrotron bursts is the
same as the time between corresponding GW bursts.
Additionally, we showed how the total luminosity and

peak frequency of our synchrotron SEDs vary with choice
of total binary mass and the power-law exponent. For an
exponent of p ¼ 2.5 andMtot ¼ 109M⊙, the SMBBH has a
bolometric luminosity of Lbol ¼ 1 × 1041 erg s−1, sug-
gesting that an instrument such as NIRCam would observe
such an object out to ∼7 Gpc. Spinning BHs could increase
the total luminosity by an order of magnitude [35].
Furthermore, calculations that started closer to the horizon
(z ∼ 20M instead of z ∼ 50M) can increase the peak
luminosity by a further order of magnitude, making these
systems potentially detectable at large cosmological
redshifts.
A fully general-relativistic ray-tracing and radiative

transfer calculation is necessary to decipher the exact
emission from the jet region and to understand emission
from processes in the circumbinary disk, the inner cavity,
and the minidisks. The latter is expected to be responsible
for the bulk of the x-ray/UV emission as well as Doppler
shifted emission lines [13,120,121].
Our simulations are an essential first step toward under-

standing the behavior of eccentric BBHs in the GW-driven
regime. We have revealed novel features in their accretion
rate and jet emission. However, these simulations have their
limitations; for example, we have only considered a non-
spinning binary embedded in an aligned and thick accretion
disk. An exploration of the full parameter space including
configurations with spins for the BHs, unequal masses,
tilting the accretion disk with respect to the binary’s angular
momentum, and exploring different accretion regimes with
a thinner accretion disk, are necessary to achieve a com-
plete understanding of the dynamics of and emission from
accreting SMBBHs. Finally, radiation feedback effects
have not been considered and can play a substantial role
in cooling and driving winds from the CBD and minidisks
when near the (super-) Eddington regime. In future work
we will investigate all these parameters.
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APPENDIX A: MEASURING ORBITAL
ECCENTRICITY

The definition of eccentricity in the fully general relativ-
istic two-body problem is not straightforward (see, e.g.,
[123,124]). In particular, there exists no unique definition for
eccentricity, and some definitions are not gauge independent.
Here, we use a simple approach based on the quadrupole
approximation to approximately fit for the eccentricity of our
orbits. Our approach is not gauge invariant but it is easy to
implement and yields reasonable results.
We start with the solution of the Newtonian 2-body

problem, where the orbital separation evolves in time as

dðtÞ ¼ aðtÞð1 − eðtÞ2Þ
1þ eðtÞ cos ðωtþ φÞ : ðA1Þ

Here aðtÞ is the time-dependent semimajor axis due to the
inspiral of the black holes, e is the (generally) time-
dependent eccentricity of the orbit, ω is the angular
frequency of the orbit, and φ is a phase offset. Since we
are in a regime where energy dissipation occurs through
gravitational waves, the average power over one period of
an elliptical orbit is given by [60]

LGW ¼ 32

5

G4

c5
M3μ2

a5
fðeÞ ðA2Þ

where M ¼ m1 þm2, μ ¼ m1m2=ðm1 þm2Þ, and fðeÞ is

fðeÞ ¼ 1þ 73=24e2 þ 37=96e4

ð1 − e2Þ5=7 : ðA3Þ

Finally, by equating the gravitational wave power to the
time derivative of the orbital energy, we can solve for the
time derivative of the semimajor axis

dE
dt

¼ GMμ

2a2
ȧ ¼ −

32

5

G4

c5
M3μ2

a5
fðeÞ

⇒
da
dt

¼ −64G3

5c5
M2μ

a3
fðeÞ ðA4Þ

Integrating the above equation (assuming e is constant)
ones finds

aðtÞ ¼ a0

�
1 −

4t
τ

�
1=4

; ðA5Þ

where a0 is the initial semimajor axis of the orbit and τ is
the coalescence timescale of the binary (which effectively
contains fðeÞ when e is constant). We can substitute
Eq. (A5) into Eq. (A1) to obtain

dðtÞ ¼ a0

�
1 −

4t
τ

�
1=4 ð1 − e2Þ

1þ e cos ðωtþ φÞ : ðA6Þ

Finally, due to non-negligible eccentricity of the BBH
orbits, we include the true anomaly θ in the cosine in the
denominator of Eq. (A6), but we expand it in eccentricity to
Oðe3Þ [125]

θ ¼ ψ þ
�
2e −

1

4
e3
�
sinψ þ 5

4
e2 sin 2ψ þ 13

12
e3 sin 3ψ :

ðA7Þ

Here ψ ¼ ωtþ φ is the mean anomaly. The mean anomaly
and the true anomaly are equal for circular orbits, but differ
for eccentric orbits. Therefore, the final equation we use to
find the eccentricity in our simulations is

dðtÞ ¼ a0

�
1 −

4t
τ

�
1=4 ð1 − e2Þ

1þ e cosðθÞ ; ðA8Þ

with θ given by Eq. (A7). We are left with five parameters
which we fit for using the coordinate separation of the
binaries in our simulations: τ, the coalescence timescale,
a0, the initial semimajor axis,ω, the orbital frequency, φ the
phase, and the eccentricity, e.
In Fig. 9, we plot our three binaries with varying

eccentricity, e ¼ ½0.00; 0.17; 0.31�. In the left column,
we plot the x − y orbital tracks of the BBH from initial
conditions through to t=M ∼ 10000. We plot the orbital
track for just one of our BHs because the BHs are identical
and have identical orbital tracks. In the right column, we
plot the orbital separation of the BBH as a function of time.
The solid gray line represents the orbital separation in the
simulation and the dashed black line describes our best fit
as determined by the method outlined above.
The top row in Fig. 9 describes the quasicircular orbit,

where e ∼ 0.0. As expected, the orbital separation is
approximately constant over an orbit (∼500M) and decays
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slowly over the GW timescale. The middle row describes
the e ¼ 0.17 binary. The initial orbital separation varies
from d ¼ 23M to 17M and the semimajor axis decays from
a ¼ 20M to ∼12M. The bottom row describes our highest
eccentricity binary, where e ¼ 0.31. The initial orbital
separation varies from d ¼ 26M to 14M across an orbital
timescale and the semimajor axis decays from a ¼ 20M to
∼10M. As expected the eccentric binaries decay faster (see
Ref. [60] for an analytic description). If we include the
leading order correction to the eccentricity evolution from
[60], our results are unchanged for the e ¼ 0.00, 0.17 cases.
The e ¼ 0.31 simulation, however, has a best fit value of
that is ≲1% larger than the value measured without the
leading order correction in the evolution of the eccentricity.
We also implement the gw_eccentricity package

introduced in [123] to measure the eccentricity of our
binaries with their l; m ¼ ð2; 2Þ gravitational wave mode.
We measure our e ¼ 0.17 binary to have an eccentricity
of e ∼ 0.15 at t=M ∼ 1500 and e ∼ 0.13 at t=M ∼ 2000.

We measure our e ¼ 0.31 binary to have an eccentricity of
e ∼ 0.35 at t=M ∼ 1500 and e ∼ 0.29 at t=M ∼ 2000. This
is generally in agreement with what we measure with the
orbital separation method we outlined. But, we find that the
GW method has too much variance with respect to when
the eccentricity measurement is performed. This is likely
due to the fact that our waveforms have some noise.
Therefore, we use our orbital separation eccentricity
measurements throughout to label our cases.

APPENDIX B: SYNCHROTRON EMISSION

We perform approximate synchrotron radiative transfer
assuming flat spacetime and ignoring special relativistic
effects of the bulk fluid. We start our integrations at large
heights z ≥ 20–50M above the orbital plane, where
the spacetime metric is approximately described by the
Minkowski metric, to justify this approximation. The plasma
velocities in the jet region are only mildly relativistic

FIG. 9. The orbits of our nonspinning, binary black holes with measured eccentricities of 0.00, 0.17, and 0.31. In the left column, we
plot the x − y positions of one apparent horizon. The z-position is constant as there is no vertical precession in the orbits of nonspinning
BHs. In the right column, we plot the time-dependent orbital separation of the BHs with the thick gray lines and the best fit of Eq. (A8)
with the dashed black line. The orbital eccentricity fit is performed for the time interval 2000 < t=M < 3500. The upper end of this
interval is close to the time at which the accretion rate onto the binaries settles. We indicate the measured eccentricities in the top left and
right of the panels.
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v ∼ 0.2–0.3c. Therefore, we expect only Oð10%Þ correc-
tions to our results with a more careful computation. In an
upcoming work, this computation will integrate the covariant
radiative transfer equation all the way down to the horizons.

1. Radiative transfer equation

We use the definitions for synchrotron emissivity jν and
absorption coefficient αν of [126],

jν ¼
ffiffiffi
3

p
q3CB sin α

mec2ðpþ 1Þ
�

mecν
3qB sin α

�
−ðp−1Þ=2

Γ
�
3pþ 19

12

�
Γ
�
3p − 1

12

�
; ðB1Þ

αν ¼
ffiffiffi
3

p
q

8πme

�
3q

2πm3
ec5

�
p=2

CðB sin αÞðpþ2Þ=2

Γ
�
3pþ 2

12

�
Γ
�
3pþ 22

12

�
ν−ðpþ4Þ=2; ðB2Þ

where q is the electron charge, me is the electron mass, c is
the speed of light, B is the magnetic field strength, ν is the
frequency of light, Γ is the special function, C and p are
used to describe the electron energy distribution, and α is
the pitch angle. In the calculations we perform, we integrate
α out of the equation by assuming that the electrons follow
an isotropic pitch angle distribution between 0 < α < π=2.
Furthermore, we assume that the electrons follow a power-
law energy distribution

NðEÞdE ¼ CE−pdE; ðB3Þ

where p is the chosen power-law of the electron distribu-
tion and C is a density constant. We can determine C by
specifying the electron number density and energy density
using our simulations. First, we assume charge neutrality.
This implies

Z
∞

E1

NðEÞdE ¼
Z

∞

E1

CE−pdE ¼ ρ=mp

⇒ C ¼ ðp − 1ÞEðp−1Þ
1 ρ=mp; ðB4Þ

where ρ is the rest-mass density measured in our simu-
lations and mp is the mass of the proton. We assumed that
the matter is made of fully ionized hydrogen. We have
introduced an additional parameter, E1, which is the
minimum energy of an electron in this power-law distri-
bution. Here, we choose E1 by assuming some level of
equipartition with the local magnetic field. In particular, we
assume that the energy density of the local electron
distribution is fixed to 10% of the local magnetic energy
density. This estimated fraction is consistent with particle-
in-cell simulations of magnetic reconnection (see, e.g.,
[111]). The equipartition assumption is also motivated by

earlier studies [117–119], and has been used in analysis of
astronomical synchrotron sources, e.g., signals from tidal
disruption events in [127]. Thus, we set

ϵe ¼ ζϵB; ðB5Þ
where the electron energy density is

ϵe ¼
Z

∞

E1

ENðEÞdE ¼
Z

∞

E1

CEð−pþ1ÞdE

⇒ ϵe ¼
C

p − 2
E−ðp−2Þ
1 ; ðB6Þ

and the magnetic field energy density is

ϵB ¼ B2=8π; ðB7Þ
with B the magnetic field strength measured by an observer
comoving with the plasma. Solving for E1 yields

E1 ¼
p − 2

p − 1

ζB2mp

8πρ
: ðB8Þ

Using the last equation and Eq. (B4) we determine for the
constant C. We assume ζ ¼ 0.1 for the calculations in this
work. However, we stress that this choice does not affect
the variability of our synchrotron emission.
Finally, we integrate the time-independent radiative

transfer equation [126]

dIν
dl

¼ ðjν − ανIνÞ; ðB9Þ

along a line of sight, using a simple forward Euler scheme
with resolution Δl ¼ 2M. We have checked for conver-
gence and that our reported results are invariant with
resolution.

2. Implementation

We consider the special case where the observer is
directly along the line of sight of the jet (i.e., θ ¼ 0). In
our simulation, this means the observer is at x ¼ y ¼ 0 at
some vertical distance above the BBH. We integrate along
one line of sight and consider the emitting region to be
x; y� 250M such that the intrinsic luminosity is the
intensity multiplied by the area of the emitting region.
To scale our simulation to the supermassive black hole
systems of interest, we set the average rest-mass accretion
rate to 10% the Eddington accretion rate, that is,

Ṁedd ¼
Ledd

ηc2
¼ 4πGMmp

ησTc
ðB10Þ

where η is the radiative efficiency of the accretion,M is the
gravitational mass of the binary,mp is the proton mass, and
σT is the Thompson cross section.
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Our accretion disk is geometrically thick, making it an
appropriate model for sub-Eddington accretion. Therefore,
we choose an hṀi ¼ ξṀedd, with ξ ¼ 0.1. While ξ ¼ 0.1 is
still low enough to completely neglect radiation feedback,
we adopt it as an upper bound to the validity of our model.
One can straightforwardly use a different value since our
calculations scale with ξ. We also assume a radiative
efficiency of η ¼ 0.1 for the calculations reported in this
work.5 Therefore, our desired accretion rate is

Ṁdesired ¼ 7 × 10−10
�

ξ

0.1

��
η

0.1

�
−1
�

M
107M⊙

�
M⊙=s:

ðB11Þ

The next step is to convert quantities from the geom-
etrized units of our code to cgs units that correspond to the
desired accretion rate. If, for example, the measured time
averaged rest-mass accretion rate is hṀi ¼ 1, we convert
the simulation accretion rate from geometrized units with
M ¼ 1 to cgs units by multiplying by c3=G, which gives us

Ṁcgs ¼ 1 × c3=G ≃ 2 × 105M⊙=s:

Finally, we scale the density and magnetic field strength
such that the simulations have the specified time averaged

accretion rate of Eq. (B11) for the time period t=M > 3000,
i.e., after the accretion rate settles. We follow the above
procedure to find this scaling factor for each of our
simulations, and use it to scale the densities and magnetic
fields. We find that the maximum density at t ¼ 0 for the
quasicircular binary is given by

ρ0;max ¼ 1.6 × 10−11
�

ξ

0.1

��
M

107M⊙

�
−1
�

η

0.1

�
−1 g

cm3
;

ðB12Þ

while for the e ¼ 0.17 and e ¼ 0.31 cases it is given by

ρ0;max ¼ 1.8 × 10−11
�

ξ

0.1

��
M

107M⊙

�
−1
�

η

0.1

�
−1 g

cm3
;

ðB13Þ

and

ρ0;max ¼ 2.6 × 10−11
�

ξ

0.1

��
M

107M⊙

�
−1
�

η

0.1

�
−1 g

cm3
;

ðB14Þ

respectively. The amplitude squared of the magnetic scales
like the density, so we can use the previous expression to
scale the magnetic fields for each of our simulations, and
use them as input to our synchrotron radiation transport.
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